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The universal R matrix of the two-parameter deformed quantum group U,(SU (1,
1)) is derived. In previous work we suggested a method to derive the universal
R matrix of the two-parameter deformed quantum group U,,(SU (2)). This method
is different from that of the quantum double; it is simple and efficient for quantum
groups of low rank at least. This paper studies the universal R matrix of the two-
parameter deformed quantum group U,(SU (1, 1)) using the same approach.

The two-parameter deformed quantum group Uy(SU (1, 1)) has three
unitary irreducible representations (Jing and Cuypers, 1993): a positive dis-
crete series, a negative series, and a continuous series. The generators of the
two-parameter deformed quantum group Ug(SU (1, 1)) can be obtained from
a Jordan—Schwinger realization in terms of two-parameter deformed bosonic
creation and annihilation operators:

7

LY =5 'atas, LY=s'aa Li=tM+NM+1) 1)

—1
L% = sbiby, LY =sbiby, Lb= S (NT+ N3+ 1) (2

where {ai", a;, N} and {b;", b;, N?} (i = 1, 2) are independent and satisfy
the commutation relations

ai a; = [Nilys, aai = [N + 1] 3)
bitbi = [Nllgs—1, b =[N} + 1141 )
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where the deformation brackets are defined as
(¥l = 8" 7Ix] = 5"  — ¢ (g — g7 ). [¥lgs—1 = s '[x]  (5)
It is easy to check that
[Lg(b)’ Lq:(b)] - ith(b)’ sTIpAb) pat) _ oy ab) pab) — _sszgU?)[ng(b)]
(6)

For simplicity, we will omit the index a (b) in the following discussion.
The quantum Uy (SU (1, 1)) is a Hopf algebra; its coproduct is (Yu et al.,
1996, 1997a, b)

A(L)) = LyX1+1X L,y (7)

A(L+) = Le X (sq) "0+ (s 'g)"0 X Ls (8)

We define an inverse of the coproduct A = T A, where T is the twisted
mapping, i.e.,

T(x®y) =yXx,  Vx, yely(SU(, 1) 9
So the following relation holds:
A@R = RA(a),  a€U,(SU(1, 1)) (10)

with R is the universal matrix and can be written as
R=Y &b, (1)
Accordingly, Eq. (11) satisfies the Yang—Baxter equation (Yang, 1967; Bax-
ter, 1972)
Ri2R13R3 = RozRizRiz (12)
where
R =R®I1, R3=Ya®1®b, Ry=1XR

For convenience, let x and x’ stand for the first and the second operator
in the tensor product U,(SU (1, 1)) ® U,(SU (1, 1)), respectively. Therefore
Egs. (7), (8), and (10) take the form, respectively.

A(L()) =Lo+ Lj (13)
A(Ls) = Le(sq) ™0 + (s 'q)" Lt (14)
A(Lo)R(x, x') = R(x, x")A(Ly) (15)

A(Ls)R(x, x") = R(x, x")A(L) (16)
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In order to get the solution of Egs. (15) and (16), we let
R(x,x') = Zb Ci(Lo, LO)L- L (17)

where C;(Lo, L¢) is a functional of the operators Ly and Lj as well as paramart-
ers /, ¢, and s.
To obtain nontrivial results, we have to substitute Eq. (17) into Eq. (16):

s TR gL O (Ly —1, L + 1) = (sq) 0 Ci(Lo — 1 + 1, Ly + 1) (18)

(sq) ' CLo—LLo+ 1) — (s '9)C(Lo— L, Lo+ 1+ 1)
= g0~ Lo g L0t 4 1], 2L — ICi(Lo — [ — 1, Ly + 1+ 1) (19)
sty e Ly — L LY+ 1) = (s 'g)"CLo — I, Lb + 1 — 1) (20)
(sq) 0 Ci(Lo— 1= 1, Li+ 1) = (s7'q) " Lo = 1, L + )
=5 L0720 TRt L ] LG+ ) Cre(Lo— I — 1, Lo+ 1+ 1) (1)
We let
Ci(Lo, L) = ClsaL()Lf)+bL@+cLE)qu()Lf)+eL()+flf) (22)
On the substitution of Eq. (22) into Egs. (18) and (20, respectively, we have
a=0, b=rc¢=1, d=2, e = —I, f=1 (23)
The recurrence formula is easy to get
Cr= (¢ = D¢ "2 (24)
where we have Cyp = 1. Equation (17) can be rewritten as

® ((172 _1)1(1*1(1*1)/2
R(x,x') =
(x.x) = % o

Let us check whether Eq. (25) holds for the Yang—Baxter equation,

SI(L()+L0)q2L0L0*1(L0*L0)L17Ll (25)

R(x, x")R(x, x")R(x', x") = R(x", x")R(x, x")R(x, x") (26)
The left-hand side of Eq. (26) is
R(x, x")R(x, x")R(x', x")

©

= q2L0Lf) + 2LoLo+ 2LE)L}’)qu<L(rLE)>fN<LErL6>+NM
M; Lo
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, , ) min(M,N) ,
X SM(L()+L())+N(L() + LU)LA—/[L+N z CM*lC]CNflqil(ZLU+2N71)
=0

< s*l(2LE)72M+I)7NM L’+M*lL’+N*I 27
The right-hand side of Eq. (26) is
R(x", x")R(x, x")R(x, x")

o0
; quoLE)HLoL}’)HLE)L}’) q*M(L()*LE))*N(L(')*L'(/)HNM
M,N=0
i i , min(M,N) ,
M(Ly+Ly)+NLo+L My "N I(2Ly—2M+1
X gMLo+Lo)tNLo+Lo) p M p ") Z CN#CICM#(!( 0 )

X sl(*ZL()*2N+1)+NML'7N*ILl\/ffl (28)

On the other hand, we have for all nonnegative integers M and N

min(M,N) i ,
—I2Lo+2N—1) —I(2Ly—2M+1)—NM y 'M—1 y 'N—I
Z‘b CM#C]CN#(] (2Lo )s (2Lg ) LypA

min(M,N) , ,
= z} CN*]C]CMflql(ZL()72M+I)SI(72L()72N+])+NML—]\]71K+A/[71 (29)

From Egs. (27)-(29), we conclude that Eq. (26) is the universal R matrix of
the two-parameter deformed quantum group U,(SU(1, 1)).
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